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A method is formulated for refining and/or extending a set of crystallographic phases by real-space 
convolution utilizing the fast Fourier-transform algorithm. The method is applied to extending a set of 
myoglobin phases and the results show that high-resolution structural information can be obtained from 
high-resolution intensities and low-resolution phases. 

Increasing interest is being shown in tile application of 
the Karle & Hauptman (1956) tangent formula to re- 
fining and/or extending a set of crystallographic pro- 
tein phases. Tangent formula calculations are presently 
done as reciprocal-space convolutions, and computer- 
time considerations limit the number of reflections 
which can be considered. Moreover, the non-negativity 
property of the electron-density function, which is as- 
sumed by this method, is only approximately satisfied 
when applied to data short of atomic resolution, and 
cannot be directly imposed on these data. Nor can 
other desirable adjustments of the electron-density 
function be made easily. We present a real-space meth- 
od for phase extension and refinement involving the 
calculation of sharpened electron densities by a fast 
Fourier-transform algorithm, which minimizes these 
difficulties and is much simpler conceptually. 

It is closely related to, but not analytically equiva- 
lent to, the tangent formula, and is also similar to the 
'phase correction' techniques of Hoppe & Gassmann 
(1968). The method is here applied to predicting a set 
of myoglobin phases between 3 and 2,~ resolution. The 
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predicted phases were generated from 2A intensities 
and from 3A phases obtained by the method of mul- 
tiple isomorphous replacement. The extended (2A) 
electron density map showed noticeable improvement 
over the 3A map. 

The method 

Sayre (1952) showed that a relationship between struc- 
ture factors (F's) can be derived from the fact that, for 
structures composed of like atoms, the electron density 
function, Q (x,y,z), and its square are very nearly alike. 
Applying this condition to a sharpened electron density 
function or E map (QE), consisting essentially of point 
atoms, calculated from normalized structure factors 
(E's), one obtains the self-convolution 

EL=ChEF_.ugh_k, (1) 
k 

where C is real and, in principle, constant for a given 
resolution, and the E 's  are complex. Equating real and 
imaginary parts of equation (1), and dividing, yields 
tile tangent formula: 

IEk Eh-k [sin(~0k + ~0h_k) 
tan (oh = k . (2) 

Y. IEkEb_k Icos(~0k + ~0h_k) 
k 
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(This equation was actually obtained by Karle & 
Hauptman on the basis of statistical arguments.) 

The phase, q~h, of a given reflection h is thus written 
in terms of the amplitudes and phases of the complete 
set of reflections. Where h is contained in the set of k, 
this cyclic process is one of 'refinement'; when this is 
not the case, it is 'extension'. (In the extension calcu- 
lations presented in the next section, the k's are the re- 
flections out to 3 A resolution and the h's are those from 
3 to 2/k resolution.) Many sequential combinations 
of extension and refinement are obviously possible. The 
application of equation (2) to extending a set of protein 
phases ordered by E value magnitudes, rather than re- 
solution, has been explored by Coulter (1969). 

As currently evaluated this equation requires a num- 
ber of operations proportional to Nh x Ark, where N~ is 
the number of reflections (h) being refined or extended 
and Ark is the number of reflections (k) being used for 
this process. Calculation times can be considerably re- 
duced from this N2-type dependence by adopting a 
mathematically equivalent, but computationally faster, 
procedure involving Fourier transforms and particu- 
larly, the Cooley-Tukey (Cooley & Tukey, 1965) 'fast 
Fourier' algorithm. [An early formulation of this ap- 
proach was given by Zwick (1968).] The method would 
be to simply calculate 0E, the Fourier transform of the 
E's [represented below as T(F_~)], square it, and take the 
inverse transform: 

e~= C~T-I[{T(~)}2]. (3) 
The phases of EL thus calculated are combined with the 
observed amplitudes to generate a new 0E for visual in- 
spection or further cycling. 

It is important to note that 0E must be sampled more 
finely than its transform if the inverse Fourier operation 
is to yield accurate Eh's [see, e.g., discussion of Lipson 
& Cochran (1966) who suggest sampling 0 in any di- 
rection at 3 times the highest index observed in that 
direction]. Evaluation of equation (3) requires two 
transform operations. (The time for squaring is negli- 
gible.) If the problem were one-dimensional, and con- 
ventional Fourier methods were used, this real space 
calculation would exhibit the same N/-type dependence 
as is shown by the reciprocal-space convolution, since 
the Fourier operation itself requires of order N 2 ope- 
rations. This is not the case in three dimensions: The 
real space approach of equation (3) even with conven- 
tional Fourier programs, may be faster than the recip- 
rocal space (tangent formula) method because the Bee- 
vers-Lipson procedure reduces Fourier calculations to 
significantly less than of order N 2 dependence. In many 
cases, however, even greater time savings can be 
achieved by the use of the Cooley-Tukey 'fast-Fourier' 
algorithm, and this is the technique which we have uti- 
lized here. [The power of the algorithm for speeding up 
convolution calculations was first explored by Stock- 
ham (1966).] The algorithm is also quite convenient, 
since, as it is usually programmed, it can be used equ- 
ally well for both forward and reverse transforms, while 

conventional programs generally do not provide for 
performing the QE ~ E Fourier operation. 

The Cooley-Tukey algorithm 

The Cooley-Tukey algorithm (CTA) evaluates a trans- 
form sampled at M points in of order M log2 M ope- 
rations. From the point of view of a crystallographer, 
this algorithm can be considered to be essentially a ge- 
neralization of the Beevers-Lipson factorialization 
method, so that even one-dimensional summations can 
be speeded up. (This is done by converting the scalar 
product, hx, into a vector dot product, h .  x, where the 
dimensionality of the vector space is the number of bits 
required to specify these two numbers and where the 
binary representation of h and x specifies their vector 
components in this space.) 

While in principle, this algorithm should be much 
faster than conventional Fourier methods, it has some 
features which diminish its comparative advantage. As 
presently programmed, the algorithm generates the 
same number of function values in both real and recip- 
rocal space. Because of the sampling requirements of 
equation (3) mentioned earlier, the size of both forward 
and reverse transform calculations will be set by the 
number of points for which 0E must be evaluated, and 
thus many very high resolution reflections will be un- 
necessarily considered. Secondly, existing, CTA pro- 
grams do not utilize space group symmetry (although 
use can be easily made of Friedel's relation). 

Even with these limitations Fourier calculations with 
the CTA are likely to be much faster than with conven- 
tional programs, when the complete transform can be 
held in core storage (as was the case in the present 
work). The CTA has also been programmed for use 
with auxiliary storage (tapes or disc) by Singleton (1967) 
and by Brenner (1968). For such applications, calcula- 
tion times are slower and highly dependent upon the 
particular computer system configuration being used. 

Both of the above-cited limitations (non-utilization 
of space group symmetry and consideration of many 
unnecessary reflections) are probably not intrinsic to 
the algorithm, and we are currently trying to modify it 
to take these factors into account. The second limita- 
tion is, in some sense, an advantage in that many of the 
complexities which space group considerations intro- 
duce into conventional Fourier or tangent formula cal- 
culations are here simply avoided. 

The Cooley-Tukey algorithm also suffers somewhat 
in flexibility in that the transform domain is a parallele- 
piped, each of whose sides is sampled at 2 ~ points, 
where i is some integer. This is not an absolute require- 
ment, but most programs deal with this case. General- 
ly, the number of points sampled in any direction 
should be a highly composite number, if the algorithm 
is to yield substantial benefit. 

The CTA-Fourier program used by us (which makes 
use of the Friedel relation) was written by Norman 
Brenner of the M, !, T, _Lincoln Laboratories, A more. 
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detailed discussion of some computational aspects of 
this work is given in a later section of this paper. 

The method, continued: modifying the density function 

In an application of equation (2) to refining phases of 
cytochrome-C at 4A resolution, Weinzierl, Eisenberg 
& Dickerson (1969) draw attention to the fact that the 
existence of negative regions of density (generated by 
series termination and other errors) may be a source of 
difficulty. The tangent formula gives the phases of the 
squared E map. If the E~=Eooo term is included in both 
the numerator and denominator of equation (2), the 
zero level of the 'implied' E map will be properly ad- 
justed and the map ideally will be free of negative re- 
gions. However, series termination and other errors 
nevertheless generate such regions which will, effect- 
ively, be squared into false peaks. A reciprocal space 
calculation with equation (2) cannot deal with this 
problem. However, in the real space method discussed 
here, all negative values of 0E are simply set to zero be- 
fore squaring. Thus the present approach, aside from 
its computational advantages, should be more power- 
ful, analytically, than the tangent formula. 

We wish to clarify and emphasize this point by not- 
ing that equating to zero, negative density regions, or 
more generally, setting minimum significance levels, 
can be used by itself, i.e. without squaring, for phase 
extension in resolution. This has been shown by Kartha 
(1969), in calculations on small test molecules. (The use 
of this method for generating new phases at a given reso- 
lution or for refinement of 'old' phases has not, to our 
knowledge, been tested.) 

Nevertheless; squaring 0E after minimum-level trun- 
cation should yield additional dividends, since it intro- 
duces further information beyond the positivity of the 
density function, namely its atomicity. This will depend, 
of course, on resolution. However, it is not unreason- 
able to expect that the phases of the squared and mini- 
mum-truncated QE may be superior to those of the 
merely truncated ~E, even when individual atoms are 
not resolved, since the spatial distribution of electron 
density values may still approximate the atomic more 
closely than it resembles some set of random positive 
numbers. The question deserves further study. For the 
calculations presented in the next section, we have used 
both minimum level truncation and squaring, and have 
not attempted to separate out their relative contribu- 
tions to the phase extension example. 

It is worth stressing that use of squaring for phase 
extension/refinement does not result simply in sharp- 
ening, although that effect is inevitably also obtained. 
More sharpening would result from using the calcu- 
lated E amplitudes with the calculated phases for the 
~E synthesis; the use of observed E values, however, 
produces qualitative changes in the feature of the map. 
(The view that intensity information specifies only peak 
heights and not positions is commonly heard, but is 
clearly incorrect.) 

Other modifications of the density function may be 
desirable before the inverse transform is taken and its 
phases are used for a new cycle. For example, a maxi- 
mum truncation level can be set, in addition to a mini- 
mum level, to prevent a multi-cycle phase refinement 
from diverging because of repeated enhancements of 
the strongest peaks. 

The phas ecorrection methods of Hoppe & Gassmann 
are similar to the techniques discussed here. In their 
1968 paper, these authors are principally concerned 
with the automatic completion of partial structural so- 
lutions, and the modification of 0 is tailored to this 
particular application. They utilize reciprocal space cal- 
culations, but emphasize that for large structures, real 
space methods are much faster. In phase correction, 0 
is modified by a combination of square and cubic terms. 
The square term functions as it does here in the present 
paper; the cubic term essentially serves the purpose of 
limiting the maximum density level. This polynomial 
method is needed for the reciprocal space approach, but 
can be discarded in real space calculations in favor of 
more intuitively-justifiable modifications (which may 
be difficult to represent analytically in a reciprocal 
space convolution expression). Thus, in more recent 
work, Hoppe, Gassmann & Zechmeister (1969) also 
propose, for the real space approach, the previously 
mentioned and quite simple technique of maximum- 
level truncation, essentially in place of the cubic. (They 
use this method in their linear form.) We may also note 
that, when done in reciprocal space, phase correction 
shares with the tangent formula the further disadvan- 
tage of improperly treating negative density regions. 

Our present method differs from real-space phase 
correction principally in that we use E's, and thus our 
approach closely resembles the familiar tangent for- 
mulaofKarle & Hauptman, while Hoppe & Gassmann 
deal with F's and the unsharpened, ordinary, density 
map. Because the E map exhibits more severe series 
termination effects than the F map, minimum-level 
truncation is likely to be more critical and thus more 
useful for phase extension, in the former case; likewise 
squaring might be more valid at lower resolution for 
0E than it would be for 0. Perhaps equivalently, the 
statistical arguments which favor the use of E's, rather 
than F's, in the tangent formula would support their 
use in real space methods as well. However, these ques- 
tions should certainly be tested empirically. 

We hope this brief discussion helps clarify some of 
the interrelationships between these several methods, 
which are all really based upon a few exceedingly 
simple physical principals. 

Application of the method to extending a set 
of myoglobin phases 

A situation commonly found in protein structure anal- 
ysis occurs when intensity information can be obtained 
beyond the resolution range for which phases are avail- 
able. This is not uncommon in the neighborhood of 3A. 
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resolution beyond which it becomes increasingly dif- 
ficult to obtain accurate phases, although amplitudes 
may well extend to 2fit resolution or below. 

To what extent is equation (3) useful for calculating 
phases in practice? We have attempted to answer this 
by calculating phases from 3 to 2 ~  which are then com- 
bined with the observed (3 to 2A) amplitudes to give 

an extended Fourier synthesis, hopefully superior to the 
3 ~  map. If successful this approach would facilitate 
the interpretation of electron density maps. At low res- 
olution (for example, 3A to 2A extension), it would 
help in tracing the course of the polypeptide chain; at 
high resolution (e.g. 2 to 1.5A extension) it could yield, 
without bias from an existing model, more reliable val- 
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Fig. 1. Stereo pair photographs of the electron density of myoglobin in a region of the H helix. A model of the molecule based on 
the 2 A coordinates is superimposed. (a) Electron density distribution using Eobs, ~obs to 3 A, (b) density distribution using 
extended phases, (c) electron density distribution using Eobs, tpobs to 2 A, 
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ues for atomic coordinates and possibly reveal new 
atoms not clearly defined in previous maps. This high 
resolution case, for myoglobin and vitamin B-12, has 
been considered by Hoppe & Gassmanrt (1964) with a 
reciprocal space convolution of F's. 

From a set of about 9000 2A myoglobin intensities, 
we first computed the normalized structure factors Eobs, 
using the K-curve method of Karle, Hauptman & 
Christ (1958). The origin term, E(0,0,0), was calculated 
on the basis of the 2400 myoglobin atoms in the unit 
cell, thus effectively ignoring the solvent contribution 
to the intensities. With values of Eobs and isomorphous 
phases, ~0 obs, to 3 A resolution, we computed an elec- 
tron density map. Fig. 1 (a) shows a portion of the map 
in a region containing the first four residues of the H 
helix. (We avoided the region around the heine because 
of possible ripple effects introduced by the iron). A 
model of this part of the helix was constructed on a 
graphics display from a set of myoglobin coordinates, 
and was superposed over a display of the electron den- 
sity sections. To extend the phases, the electron density 
was first modified by eliminating all negative regions 
and then squared. The inverse transform of the squared 
structure gave both unscaled amplitudes, Ecale and the 
required phases (,0eale. A comparison between the pre- 
dicted (Peale and true (isomorphous) phases ~0obs between 
2 and 3A gave an average phase difference, 
(l~0obs--(0eale[), of 82 °. (90 ° is expected for random 
results.) Since Weinzierl, Eisenberg & Dickerson (1969) 
showed that the error in phases calculated through the 
tangent formula decreased with increasing Eobs, we ac- 
cepted those values of Oeale for which the correspond- 
ing Eobs values was greater than 1. This gave some 
2000 values of ~0calc for which (l~0obs-f0calc[) was 
now 78 o. An electron density map was computed with 
Fourier components comprising values of {Eobs, ~0calc} 
between 3 and 2A for which Eobs > 1 in addition to all 
values of {Eobs, ~0obs} to 3A. Fig. l(b) shows the region 
of this extended map corresponding to that in Fig. l(a). 
(This extended map was noticeably superior to the map 
based upon all of the extended reflections, indicating 
that the improvement in phase statistics is significant). 

For comparative purposes, we also generated a map 
using all {Eobs, ~0obs} to 2A, shown in Fig. l(c). All 
maps were evaluated over the unit cell at approximately 
half-Angstrom intervals, and were contoured starting 
from identical lowest density values. The intervals cho- 
sen for contouring the 2A and the 2A-extended maps 
was twice that used for the 3 A map. (The smaller inter- 
val did not give any increased detail.) 

The extended map of Fig. 1 (b) shows several desirable 
features (see arrows) not present on the 3 A map [Fig. 
l(a)], which correlate with the known myoglobin struc- 
ture, and resemble the 2A map. In particular notice the 
additional density in the region of atoms linking the 
upper and lower portions of the chain, and in the lower 
central region just above the labelling of the photo- 
graphs. Fig. l(b) also generally shows more peaks in 
areas close to atomic positions, Density corresponding 

to atoms external to this portion of helix were present 
on both the extended and 2 A maps (and absent on the 
3 A map) although the peaks on the former were shifted 
slightly relative to those of the latter. 

An examination of other sections of density in a re- 
gion distant from the H helix showed similar improve- 
ments as a result of extending the phases from 3 to 2A 
resolution. Further improvement of the results should 
be possible by combining extension with refinement, 
i.e. performing more than a single cycle and experi- 
menting with phase selection criteria involving compa- 
risons of Eobs and Eeale. 

Computational aspects 

In the present example, the transform was evaluated 
entirely within the core memory of an IBM 360]95. 
The myoglobin unit cell is (64.5, 30.9, 34.7), and at 2A, 
the limiting (h,k,l) values are (30, 15, 17). The trans- 
form was evaluated at 128 x 64 x 64 - or about one-half 
million - points, and took about 50 seconds. This cor- 
responds roughly to half-Angstrom sampling of the cell, 
somewhat more than is needed according to Lipson & 
Cochran. In reciprocal space, this array includes re- 
flections within index limits of (64, 32, 32) - clearly very 
many more than are needed to generate 0E or are of 
interest for the phase extension. (A (64 x 32 x 32) array 
size would fall somewhat short of the Lipson-Cochran 
sampling proposal, being approximately twice rather 
than three times the 2A (h,k,l) limits. However it would 
be most interesting to see if phase extension and/or re- 
finement would work with this reduced array, since a 
much smaller core memory can be used and the calcu- 
lation would be 24 times faster because of the M log2 M 
dependence.) 

A cycle of extension thus required less than two min- 
utes of computer time and yielded calculated intensity 
and phase values for N~___9000 (asymmetic unit) re- 
flections to 2 A from N~_ 3000 reflections to 3 A. While 
only 2000 of the 9000 phases were used here, in other 
applications and with proper weighting schemes, for 
example, weighting by figures of merit, one might well 
consider utilizing all the calculated quantities. Even 
with smaller core machines, where auxiliary storage 
must be used, the present real-space approach to (modi- 
fied) tangent formula calculations should still give 
very significant time savings. The advantage of the 
Cooley-Tukey algorithm over conventional Fourier 
programming under such conditions is a separate con- 
sideration which will depend on the detailed nature of 
the crystallographic problem and on the computer fa- 
cilities which are available. To emphasize the point, 
however, that in-core transforms by the Cooley-Tukey 
algorithm are exceedingly fast, we note that if the 7094 
had a much larger core size, a transform such as is con- 
sidered here would take only about 10 minutes, even 
without use of Friedel's symmetry. This is obtained by 
an M log2 M extrapolation from data given in the Coo- 
ley-Tukey (1965) paper. 
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Concluding remarks 

Real space modified tangent formula convolutions uti- 
lizing the Cooley & Tukey fast Fourier algorithm are 
fast and convenient. A single cycle of phase extension 
from 3 to 2 ~  produces definite improvements in the 
3/~ electron density map. Further work in this and 
other applications is in progress. 

We are indebted to Dr J. C. Kendrew and Dr H. 
Watson of the M.R.C., Cambridge, England for the 
myoglobin data. We thank Mr N. Brenner for use of 
his fast Fourier transform algorithm, Mr R. Bornholdt 
for programming the graphics display of the results, 
and Dr T. Stockham for his stimulating seminar on 
convolution calculations. We also thank Professor Le- 
vinthal of Columbia University, Biology Department, 
for providing a National Institutes of Health grant. 
One of us (MZ) acknowledges support from a National 
Research Council (AFOSR) Postdoctoral Fellowship. 
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Entsehmierung yon fehlerbehafteten Riintgen-Kleinwinkel-Streukurven 

VON GREGOR DAMASCHUN, JURGEN J. MULLER UND HANS-VOLKER~P()RSCHEL 

Forschungszentrum fi ir  Molekularbiologie und Medizin der DA W zu Berlin, Physikochemisches Zentrum, 

1115 Berlin-Buch, Deutsche Demokratische Republik 

(Eingegangen am 9. September 1969 und wiedereingereicht am 15. Januar 1970) 

The experimentally determined small-angle X-ray scattering curve is approximated by a Fourier series. 
For smoothing the scattering curve a limit for the correlation range of the difference of the electron 
density from the average is presupposed. The smoothing, the correction of the slit width error by de- 
convolution and the differentiation for the correction of slit height error are carried out with the Fourier 
coefficients. The smeared scattering curve is reconstructed by Fourier synthesis. The method makes it 
possible to correct scattering curves with random and no-random errors working with digital computers 
in on-line or off-line technique. 

Einfiihrung 

Bei Strukturuntersuchungen mit Hilfe der isotropen 
R/Sntgen-Kleinwinkelstreuung (RKWS) werden aus In- 
tensit/itsgrfinden meist Diffraktometer mit Schlitzgeo- 
metrie (Kratky, 1967) benutzt. Hierbei tritt eine, als 
Verschmierung (Kratky, Porod & Skala, 1960) bezeich- 
nete, apparativ bedingte Verzerrung der Streukurven 
auf. Sie muss im allgemeinen vor der weiteren Auswer- 
tung der Streukurven rechnerisch eliminiert werden. 
Die experimentellen Methoden zur Registrierung der 
RKWS sind in den letzten Jahren wesentlich verbessert 
worden, Es ist mSglich, RKWS-Diagrarnme mit auto- 

matisch gesteuerten Diffraktometern mit einem Fehler, 
der kleiner als 1% ist, zu registrieren. Diese Messge- 
nauigkeit daft  durch die notwendige Entschmierung 
nicht in Frage gestellt werden. Daher sind in den letz- 
ten Jahren verschiedene Methoden dafiir diskutiert und 
erprobt worden. 

13bersichten fiber die verschiedenen analytisch-nu- 
merischen Methoden, die als Entschmierung bezeich- 
net werden, geben Hossfeld (1968), Lake (1967), Fje- 
dorov (1968), Fjedorov, Andrejeva, Volkova & Voro- 
nin (1968) und Taylor & Schmidt (1967). Es sind strenge 
mathematische L~Ssungen ffir die die Verschmierung 
be.schreibende Integralgleichun$ yon Mazur & Wirns 


